Another Astrophotography Night!

Last night, I headed out to my driveway again and set up my C11–but this time, I borrowed my dad’s camera!

I’m just starting out, and I haven’t done anything with these photos yet. I’ve installed Deep Sky Stacker for turning these into quality amateur photos, but I haven’t actually started using it yet. I also don’t have Photoshop (and can’t get it just yet…). My dad did touch these up just a bit on his computer, but there is very little editing going on at this point. And these are my first photos ever.

(These are credited to my other blog, risingstargazer.com, which is set to launch soon. Right now, you’ll just see a “Coming Soon” banner.)

But they came out surprisingly good, so I thought I’d share…

Continue reading

Tonight’s Saturn

You guys are probably wondering where I’ve been, huh?

For the better part of this year, I’ve been hard at work at my novel, at the expense of pretty much everything else—and I’m pleased to report it’s almost done! I’m looking forward to getting back to regular blog posts in January.

But tonight, I set up my telescopes in my driveway, and I thought I’d try something new. A few years ago, I got a nifty little device for Christmas: a phone holder that clips to my telescope eyepiece. Thought I’d finally see what it can do.

Below is my first attempt at Saturn. You can also see several of its moons. I’m not sure exactly which ones, but I know that Titan is on the far bottom right.

Here is a slightly better view, through my larger 11-inch telescope. You can see the rings a bit here:

Also, here is Jupiter alongside the four Galilean moons: Io, Europa, Callisto, and Ganymede.

How Deep-Sky Catalogs Work

Meet the Veil Nebula, one of my favorite deep-sky objects.

The Veil is one of the more common star party requests I get from more experienced participants. Unfortunately, it requires a very powerful telescope. My 11-inch Schmidt-Cassegrain–pretty advanced, as far as intermediate amateur telescopes go–can barely manage it with a nebula filter.

The Veil has several different segments and can’t be viewed all at once. Seriously–the entire Veil Nebula covers an area six times the diameter of the full moon! If it were bright enough to see with the naked eye, it would be a very visible object.

Together, the segments of the veil make up the Cygnus Loop: a ring-shaped phenomenon that is a supernova remnant, formed roughly 10,000 years ago. That’s actually not that long ago, in astronomical terms. But other supernova remnants, such as the Crab Nebula, are much younger.

Those segments have all been observed separately over time and ended up with separate designations in star catalogs, too. The Veil’s components within the NGC star catalog are NGC 6960, NGC 6992, NGC 6995, and IC 1340. It is also known in the Caldwell catalog by Caldwell 34 and 33.

Fainter “knots” of nebulosity that you might not immediately realize are part of a broad, wispy loop are noted as NGC 6974 and NGC 6979.

Different portions of the supernova remnant have also been named the “Witch’s Broom” and “Pickering’s Triangle.” In particular, the Witch’s Broom refers to the same segment as the picture shown above–the Western Veil.

For this post, I thought tell you a bit about how star catalogs work–and share an interesting story about the NGCs!

Continue reading

Cosmic Rays

cosmic rays.jpg

Cosmic rays remain, for the most part, a cosmic mystery.

But then, what about the universe doesn’t still remain partially shrouded in mystery?

Cosmic rays are radiation, but they’re not electromagnetic. That is, they’re not on the electromagnetic spectrum.

So, what are they?

Continue reading

Infrared & High-Energy Astronomy

atmosphere.jpg

You probably recognize this image. You see something like it whenever you look up at the sky. Some days are clearer than others—some, you might even see a completely blue sky—but regardless, you know that this is an image of our atmosphere.

But do you know just how much your atmosphere does for you?

We’ll talk about how it protects you from space rocks later on. For now, consider the energy from our own sun. The sun doesn’t just send visible light our way—it operates in all wavelengths of the electromagnetic spectrum.

Some of those wavelengths are harmful, like gamma rays, X-rays, and ultraviolet radiation. Others, like infrared radiation, microwaves, and radio waves, are perfectly fine.

The atmosphere doesn’t really pick and choose which wavelengths get through to the surface. It blocks out some radiation it doesn’t need to. At least it protects us from the harmful wavelengths.

But that’s bad news for astronomers, because those wavelengths still contain useful information about the universe.

So how to we capture and analyze them?

Continue reading

The Hubble Space Telescope

hubble.jpg

The Hubble Space Telescope is one of the most famous telescopes in the world.

Oops, excuse me—one of the most famous telescopes built.

Hubble, after all, is certainly not in this world. Unless you call the universe the “world,” it’s about as far from being in this world as you can get. It’s in space.

Hubble isn’t that different from an ordinary, ground telescope. It’s only as big as a bus. There are bigger optical telescopes. Its mirror is 2.4 m across—hardly an achievement by modern-day standards.

Palomar Observatory, which was the biggest telescope in the world when it was built, has better optics than Hubble, meaning its images are a bit crisper.

But that doesn’t keep astronomers from continuing to use Hubble. In fact, if you want to use Hubble, you have to get in line—it hardly has time to complete all the projects astronomers ask of it, even observing the night sky 24/7.

So why is Hubble so useful?

Continue reading

Radio Astronomy: Advantages

arecibo.jpg

Whoa…what’s this thing?

It’s a radio telescope, the largest in the world. It’s so huge that a normal support system can’t support its weight. So it’s basically suspended between three mountaintops. It’s 300 m across, which is 1000 feet. It’s huge.

This is the kind of construction endeavor that radio astronomers must try if they want to get much detail from radio waves. The radio wavelengths of the electromagnetic spectrum are really, really weak. You need huge telescopes to collect enough.

But, as ever, astronomers face the same basic problem: money.

Huge telescopes are expensive. It’s unfortunate for astronomers, but true—just think of the cost of labor of basically burying a whole valley under a radio dish.

So why bother?

Continue reading

Radio Astronomy: Limitations

radio astronomy.jpg

Astronomy is a labor of love, and radio astronomy is no different.

As I covered in my last post, radio astronomy deals with the longest wavelengths of the electromagnetic spectrum (a spectrum that includes visible light). Radio waves are not sound waves. They’re radiation just like visible light, infrared, and ultraviolet.

I’ll prove to you that radio waves can’t be sound waves. We get them from space—that’s why there’s such a thing as radio astronomy. But there’s no sound in space. Why? Sound requires something to pass through, and space is a vacuum.

So, we’ve established that radio waves are just another form of electromagnetic radiation. And astronomers love to collect any form of electromagnetic radiation. We can’t touch the stars ourselves, so it’s our only chance at learning about the cosmos.

Why? Because just about everything in the sky emits electromagnetic radiation.

Everything except black holes and a couple other things…but those are topics for another day.

But electromagnetic radiation isn’t easy to collect. And radio waves are especially hard.

Continue reading

Radio Astronomy

radio scope.jpg

Ever seen one of these before?

Yeah, it’s a bit bigger than your average radio antenna.

That’s because its job isn’t to direct radio signals to your house. It’s a radio telescope, and its job is to collect as many radio signals as it possibly can—from outer space, not from a radio station.

Radio astronomy is a tricky business. It has its advantages over visible astronomy—it certainly works better for interferometers—but radio signals are so weak, they’re hard to detect and study. Which is why you’ll never see a small radio telescope.

So, how do astronomers manage to collect and study radio emissions from the cosmos?

Continue reading

Info in a Rainbow

milky way.jpg

What do you see in this image?

If you’re from a larger city and haven’t had the opportunity to venture into a place like the desert, you might not know what you’re looking at. That’s the Milky Way, our name for our galaxy.

Inside this galaxy are billions of stars, including our own. Galileo Galilei was the first to discover that it was really many tiny points of light, not just a cloud-like haze across the dark night sky.

We can’t see our galaxy from outside, but we can learn a lot about it by looking out at it from within. It’s difficult. It’s like trying to learn about a building if you can never step outside one of its rooms.

But we can do it, with the help of the spectrograph.

Continue reading