What are Seyfert Galaxies?

Meet NGC 1566, an intermediate spiral galaxy in the constellation Fornax.

To the human eye, this galaxy looks almost like any other spiral: It has a central nucleus and spiral arms, and it’s full of gas and dust. As an “intermediate” spiral, its nucleus has a bit of a barred structure, but not a strong one. All that’s pretty normal, as galaxies go.

But if we look a little closer, we see that this galaxy’s nucleus is unusually bright, especially for its small size.

As it turns out, NGC 1566 isn’t so normal after all…

Continue reading

Galaxies Demystified

From the smallest of irregular and dwarf galaxies, to the most spectacular of spirals, to the most massive of ellipticals, there’s no denying that galaxies are incredible objects.

On this blog, we’ve covered a great deal of information about galaxies. We’ve followed their stories from the dawn of time in the universe to the present day, and we’ve explored all their different shapes and sizes, their masses, and the forces that shape their evolution.

If it seems like a lot, I understand.

So, let’s round up what we know and boil it down to a summary. Hopefully I can make galaxies more easily digestible!

(Though I do hope none of you actually try to eat one… 😉)

Continue reading

What is the Hubble Law?

Last week, I teased you with the idea that it’s actually easy to estimate distances to galaxies.

I do mean estimate–and distance indicators are still important.

The Hubble Law is named for Edwin Hubble, the astronomer who was first able to settle the debate over what galaxies were–using the new Hale Telescope, the largest in the world at the time. But the Hubble Law is undoubtedly what he’s most famous for.

In order to understand the Hubble Law, though, we first need a little review of the Doppler effect…

Continue reading

Black Holes: What the Movies Get Wrong

Any of you recognize this?

To those who don’t, it probably looks like a pretty unimpressive, blurry ring. In fact, this is the first ever image of a black hole, taken with an interferometer the size of the Earth.

If you’re a science geek, you’ve no doubt seen tons of artists’ conceptions of black holes on the internet. Most use a great deal of artistic license. Some of my favorite “images” of black holes used to be the ones that look like ripples in the fabric of space. Imagine my disappointment when I realized that’s not the case at all.

Black holes are singularities—infinitely dense places of zero radius with at least 3 M (solar masses) of star stuff—surrounded by an event horizon, inside of which gravity is so strong that even light cannot escape. That’s why it’s called a black hole.

But they are not “holes” in the usual sense. They are not giant space potholes that you can easily stumble into, and you certainly don’t fall into them the same way you would a pothole.

So…what are black holes really like?

Continue reading

Binary Neutron Stars

Way back when we spent a number of posts surveying the stars, we covered binary systems. These are star systems that contain multiple stars. Imagine if our sun had a companion, and two stars rose and set in our sky over the cycle of day and night.

It might surprise you that the majority of stars in the universe are actually in binary systems. Our solar system seems to be an outlier in that regard. Most stars have a companion or two or six…

…and so do some neutron stars.

Remember that neutron stars are the collapsed remnants of massive stars that have gone supernova. If most stars are part of binary systems, then naturally, some of these stars will evolve into neutron stars and still be part of their birth system.

Not all neutron stars are still part of their birth system. As I covered in my last post, many neutron stars rocket through space at incredible velocities, leaving their birth system behind.

Those that stay, though, provide astronomers with fascinating insight into the nature of neutron stars.

Continue reading

What are Planetary Nebulae?

Meet the planetary nebula, one of the universe’s most gorgeous phenomena.

If you’ve ever looked through a telescope, you may have seen one of these before. Through a small telescope, one might look like a little planet—hence the name. But make no mistake, these nebulae have nothing to do with planets, and everything to do with stars.

Up until now, we’ve covered how stars form, evolve, and eventually meet their end. They form out of a giant molecular cloud, or GMC. Eventually one cloud fragments and the cores condense into multiple stars, forming a star cluster.

The star then evolves across the main sequence, runs out of hydrogen fuel, expands into a giant, and begins to fuse helium in its core, which causes the star to contract a little and get hotter.

Then, as the star runs out of helium fuel in its core, it expands into a giant a second time. This is the last time a medium-mass star will expand. It’s also the end of the line for the fuel in its core, since it can’t get hot enough to fuse carbon.

At this point, the star is so big that gravity at the surface is too weak to hold onto its atmosphere, especially in the face of the superwind of radiation pressure from the still-collapsing core.

The result is a planetary nebula…but what exactly is a planetary nebula? What is it made of? Why does it look the way it does?

Continue reading

Spectroscopic Binary Stars

200.gif

Consider a solar system far different from our own. A solar system governed by two suns, and consisting of planets we can only dream of.

Would it surprise you to hear that, based on recent discoveries, that might actually be the norm?

The surroundings we grow up in determine our outlook on the world, and this is never more true than with our solar system. Our eight planets (though some would vehemently insist upon nine) and their parent star are all we know.

But what if I told you that most of the stars you see when you look up at the night sky have companions? And often, these companions are impossible to detect by visual means.

So how do we know they exist?

Continue reading

What Makes a Star Blue?

image.png

Albireo is the distinctive double star in the head of the constellation Cygnus. You can find it yourself if you look for the Summer Triangle amid the dusty trail of the Milky Way across the night sky.

The brighter, orange star of Albireo is a K3-class bright giant. That means it’s just a few thousand Kelvins (Celsius degrees plus 273) cooler than the sun. But it’s also larger—70 times the sun’s radius—and that makes it brighter than you would expect.

The blue star, on the other hand, is a B8-class dwarf. It has only about 3.5 times the sun’s radius, although it’s hotter by about 7422 Kelvins.

Neither star in Albireo is particularly unusual. There are doubtless millions, even billions, of other stars similar to each one. But Albireo certainly offers us the most striking contrast. Bright blue and red stars don’t often appear so close together.

But what exactly gives these stars their distinctive colors?

Continue reading

Stars and Proper Motion

uma.gif

Recognize this constellation?

Well, at the time stamp of about 2000 AD (CE), I think you will. It’s one of the most famous constellations in the night sky.

Well, technically, it’s not a constellation at all.

It’s an asterism—a commonly recognized grouping of stars that isn’t actually official as a constellation. There are tons of asterisms that you no doubt recognize…the Summer Triangle, the Great Square of Pegasus, the Big Dipper.

That’s right. That mess of stars up there that keeps changing for some reason…that’s the oft-recognized Big Dipper, part of the constellation Ursa Major.

So why the heck are the stars moving?

Continue reading

Our Sun: Helioseismology

sun photosphere

We can’t see below the surface of the sun.

That makes sense, really. We can’t see below the surface of the Earth, either—we have to get creative if we want to find out what goes on below the crust.

In the sun’s case, we can’t see below its photosphere because the gases within are so dense, light can’t escape. And we depend on light to see anything.

So…if we can’t see inside the sun, how do we study it?

Continue reading